Porous-Matrix Zirconia Ceramic Foam Filter for Metallurgical Processing

The Zirconia Ceramic Foam Filter integrates high-temperature resistance, stable pore uniformity, and excellent self-cleaning capability to deliver reliable molten steel filtration performance. Each feature is engineered for measurable improvements in casting quality, process stability, and production efficiency, ensuring consistency across continuous industrial operations.

Catalogue No. AT-YHG-PM001
Material Y₂O₃ / MgO-stabilized Zirconia (ZrO₂)
Maximum Working Temperature 1700 °C – stable for molten steel and superalloys
Filtration Efficiency ≥ 80 % inclusion removal verified in casting tests
Porosity Range 75 – 85 % open-cell interconnected structure
24H Standard Dispatch
Small Batch Support OEM
Factory Direct
Expert Engineering Support

ADCERAX® Zirconia Ceramic Foam Filter by ADCERAX is engineered for molten steel and alloy purification in industrial foundries. It features a three-dimensional open-cell structure that removes inclusions, stabilizes metal flow, and improves casting integrity. Designed for temperatures up to 1700 °C, it ensures consistent performance under severe thermal and chemical stress. The Zirconia Ceramic Foam Filter enables foundries to achieve higher yield, cleaner surfaces, and greater process reliability across demanding production lines.

Product Features of Zirconia Ceramic Foam Filter

  • The Zirconia Ceramic Foam Filter withstands temperatures up to 1700 °C, maintaining structural strength and dimensional stability during prolonged steel casting.
  • Thermal shock resistance exceeds 7 cycles under ΔT > 1000 °C, preventing fracture and ensuring continuous operation in high-heat environments.
  • Its compressive strength reaches 1.6 MPa, enabling reliable filtration under mechanical stress from molten metal flow.
  • The open-cell structure with 75–85 % porosity minimizes blockage and supports smooth flow of molten steel through consistent pore channels.
  • Its non-wetting surface resists slag adhesion, allowing filter recovery efficiency above 90 % after reverse cleaning or backflushing.
  • Long service life verified in industrial trials exceeds 300 hours of cumulative casting operation without degradation of pore integrity.
  • The Zirconia Ceramic Foam Filter achieves uniform pore density within ±1 ppi tolerance, ensuring consistent filtration accuracy and flow balance.
  • Laboratory tests confirm ≥ 80 % inclusion removal efficiency for particles below 10 µm, enhancing the cleanliness of molten steel.
  • Flow rate performance surpasses 8 L/min·cm², supporting high-throughput casting while maintaining precise metallurgical control.

Technical Properties of Zirconia Ceramic Foam Filter

The Zirconia Ceramic Foam Filter demonstrates exceptional structural integrity and thermal endurance under molten metal exposure. Its engineered zirconia matrix and uniform open-cell design ensure efficient inclusion capture, chemical inertness, and stable flow performance for continuous foundry operations and metallurgical testing applications.

Property Specification
Material Composition Y₂O₃ / MgO-stabilized ZrO₂
Maximum Working Temperature 1700 °C
Open Porosity 75 – 85 %
Pore Density (PPI) 10 – 40 ppi ± 1 ppi
Filtration Efficiency ≥ 80 % for inclusions < 10 µm
Compressive Strength (RT) 1.2 – 1.6 MPa
Thermal Shock Resistance ≥ 7 cycles (ΔT > 1000 °C)
Bulk Density 0.45 – 0.65 g/cm³
Thermal Expansion Coefficient 9.6 × 10⁻⁶ K⁻¹
Chemical Stability Inert to Fe, Ni, Cr, Co alloys
Microstructure 3D interconnected open-cell foam
Fracture Toughness ≥ 8 MPa·m½
Surface Condition Pre-fired, crack-free, chamfered edges
Testing Standard Reference ASTM C133 / DIN EN ISO 18754
Quality Certification ISO 9001:2015 process control

Specifications of Zirconia Ceramic Foam Filter

 

Type 1- Round Zirconia Ceramic Foam Filter

 

Item Diameter * Thickness (mm) PPI Percentage of opening % Filtering capacity (kg) High deoxygenation - Low deoxygenation degree
AT-YHG-PM001 D35*12 8/10/15/20/25/30 80~90 20-65
AT-YHG-PM002 D40*12 8/10/15/20/25/30 80~90 25-68
AT-YHG-PM003 D50*20 8/10/15/20/25/30 80~90 30-90
AT-YHG-PM004 D60*22 8/10/15/20/25/30 80~90 50-110
AT-YHG-PM005 D70*25 8/10/15/20/25/30 80~90 60-175
AT-YHG-PM006 D80*25 8/10/15/20/25/30 80~90 75-225
AT-YHG-PM007 D90*25 8/10/15/20/25/30 80~90 95-285
AT-YHG-PM008 D125*30 8/10/15/20/25/30 80~90 185-550
AT-YHG-PM009 D100*30 8/10/15/20/25/30 80~90 125-405
AT-YHG-PM010 D150*30 8/10/15/20/25/30 80~90 265-795
AT-YHG-PM011 D200*40 8/10/15/20/25/30 80~90 305-850
AT-YHG-PM012 D300*80 8/10/15/20/25/30 80~90 350-1005

 

Type 2- Square Zirconia Ceramic Foam Filter

 

Item Length * Width * Thickness (mm) PPI Percentage of opening % Filtering capacity (kg) High deoxygenation - Low deoxygenation degree
AT-YHG-PM013 30*30*15 8/10/15/20/25/30 80~90 20-85
AT-YHG-PM014 50*50*20 8/10/15/20/25/30 80~90 35-110
AT-YHG-PM015 75*75*25 8/10/15/20/25/30 80~90 85-255
AT-YHG-PM016 75*50*22 8/10/15/20/25/30 80~90 75-235
AT-YHG-PM017 50*75*22 8/10/15/20/25/30 80~90 35-245
AT-YHG-PM018 60*100*22 8/10/15/20/25/30 80~90 45-285
AT-YHG-PM019 70*100*22 8/10/15/20/25/30 80~90 115-365
AT-YHG-PM020 100*100*25 8/10/15/20/25/30 80~90 150-450
AT-YHG-PM021 125*125*30 8/10/15/20/25/30 80~90 235-700
AT-YHG-PM022 150*150*30 8/10/15/20/25/30 80~90 340-1010
AT-YHG-PM023 200*300*50 8/10/15/20/25/30 80~90 405-1350
AT-YHG-PM024 300*300*80 8/10/15/20/25/30 80~90 550-1750

 

Packaging of Zirconia Ceramic Foam Filter

Zirconia Ceramic Foam Filter is securely packed in moisture-proof paper and cushioned with protective lining to prevent mechanical impact. Each layer is carefully stacked inside a reinforced wooden crate for safe long-distance transport. The sealed packaging ensures product stability and cleanliness until final installation at the foundry site.

ADCERAX® Packaging of Zirconia Ceramic Foam Filter

Solving Application Challenges with ADCERAX® Zirconia Ceramic Foam Filter

ADCERAX® Zirconia Ceramic Foam Filter plays a vital role in the metallurgical refinement of molten steel and high-performance alloys. Its unique 3D porous zirconia structure enables consistent filtration of non-metallic inclusions and slag particles across demanding industrial casting environments. By ensuring stable thermal endurance and uniform metal flow, it provides measurable improvements in product integrity, surface smoothness, and yield rate within multiple heavy-industry applications.

 

  • Precision Casting for Automotive Powertrain Components

    ✅Key Advantages

    1. Sub-10 µm Inclusion Capture — Captures ≥80% of inclusions <10 µm, cutting entrapped oxides that cause machining chatter. Stable performance up to 1700 °C maintains purity during long pours.
    2. Turbulence Damping Flow Path — 3D open-cell network with 75–85% porosity smooths the velocity profile. Documented ΔT > 1000 °C, ≥7 cycles prevents crack-induced flow disruptions.
    3. Throughput-Safe Permeability — Effective flux >8 L/min·cm² sustains high pour rates without head loss. Pore density control ±1 ppi keeps fill times consistent lot-to-lot.

    ✅ ️Problem Solved

    A high-volume powertrain foundry casting engine blocks and transmission cases replaced legacy media with ADCERAX® Zirconia Ceramic Foam Filter. After SOP, metallography showed a 27% drop in non-metallic inclusion counts and in-line SPC recorded a 22% reduction in rework. Machined surface roughness improved by 0.5–0.7 µm Ra on critical faces, while weekly scrap from inclusion-related defects fell from 4.8% to 3.6%. Line takt time was maintained because permeability stayed above 8 L/min·cm² throughout the run.

  • Stainless Steel Valve and Pump Component Casting

    ✅Key Advantages

    1. Cr/Ni Alloy Inertness — Y₂O₃/MgO-stabilized ZrO₂ with Fe₂O₃ < 0.1% avoids chromium/nickel reactions at ≤1700 °C. This prevents chemistry drift at sealing interfaces.
    2. Low Adhesion, Fast Recovery — Non-wetting surface enables >90% recovery after reverse cleaning, limiting clog growth during continuous casting. Flow balance remains within ±5% of baseline.
    3. Fine Pore Uniformity — Controlled 10–40 ppi (±1 ppi) improves capture of micro-slag that seeds pitting. Inclusion-triggered leak tests pass rate rose ≥10 pp in trials.

    ✅ ️Problem Solved

    A pump and valve producer experienced leak failures traced to micro-slag in CF8M castings. With ADCERAX® Zirconia Ceramic Foam Filter, chemistry audits confirmed zero detectable Zr-induced contamination and stable Cr/Ni targets. Over eight weeks, rejection from sealing-face defects decreased 24%, and hydrostatic leak failures dropped 31%. Backflush cycles restored >90% of initial flow, holding mold fill variation within ±5%, which stabilized downstream machining.

  • Tool Steel and Die Casting Mold Production

    ✅Key Advantages

    1. Density Uniformity Gain — Inclusion removal ≥80% (<10 µm) lifted macro-density uniformity by ≈15%, limiting internal stress raisers that trigger thermal fatigue.
    2. High-Heat Structural Stability — Proven ΔT > 1000 °C, ≥7 cycles keeps the foam lattice intact across repeated heats, reducing flow shocks that distort solidification fronts.
    3. Casting Pressure Endurance — Compressive strength 1.2–1.6 MPa resists deformation, keeping flow channels effective through long campaigns.

    ✅ ️Problem Solved

    A die-tool foundry reported premature thermal-fatigue cracking and dimensional drift linked to entrapped inclusions. After adopting ADCERAX® Zirconia Ceramic Foam Filter, porosity indications in UT/NDT dropped from 0.9% to 0.5% area fraction on reference coupons. Tool life before first refurbishment extended by 18%, and heat-to-heat hardness scatter (HRC) narrowed by ~25%. Production downtime related to inclusion-rooted defects decreased by 21% across the quarter.

User Guide for Zirconia Ceramic Foam Filter

The Zirconia Ceramic Foam Filter requires careful preparation, controlled installation, and consistent maintenance to achieve stable molten metal filtration and long service life. Following these operational guidelines helps casting engineers maintain uniform metal flow, minimize inclusion defects, and protect filter integrity throughout multiple casting cycles.

  • Preparation and Preheating

    1. Clean Environment: Always prepare a dust-free workspace before unpacking to prevent contamination of the filter’s open-cell structure. Avoid touching the filter surface directly to maintain its porosity.
    2. Gradual Heating: Preheat the filter to 1100–1250 °C using a controlled ramp rate to prevent thermal shock. Uneven or rapid heating can lead to microcracking and early performance degradation.
    3. Inspection Before Use: Check for visible cracks, chipping, or structural distortion. Do not use any filter that shows signs of physical damage, as this may reduce filtration efficiency or cause molten leakage.

  • Installation in Casting System

    1. Correct Orientation: Position the filter with its denser side facing the incoming molten metal stream. This ensures uniform filtration and prevents slag bypass.
    2. Secure Fitment: Use compatible refractory sealing material to fix the filter tightly in its holder, eliminating metal leakage around the edges during pouring.
    3. Alignment Check: Ensure proper alignment between the gating system and filter inlet to avoid turbulence. Misalignment can reduce flow stability and inclusion removal efficiency.

  • Filtration Operation and Flow Control

    1. Pouring Speed: Maintain a stable pouring rate that matches the filter’s permeability. Excessive flow pressure above 0.1 MPa may cause structural stress or deformation.
    2. Temperature Management: Operate within the recommended temperature range up to 1700 °C. Lower temperatures can reduce filtration performance due to incomplete slag removal.
    3. Monitoring During Casting: Observe the molten metal stream. Any sudden pressure drop or uneven flow may indicate clogging or partial blockage requiring immediate inspection.

  • Cleaning, Maintenance, and Disposal

    1. Post-Use Cleaning: Allow the filter to cool naturally to room temperature before removal. Avoid quenching with water or compressed air to prevent thermal cracking.
    2. Reuse Assessment: In automated or repeated pouring systems, inspect residual inclusions inside the filter. Reuse is only recommended when structural integrity is fully maintained.
    3. Safe Disposal: Spent filters should be collected and disposed of as non-hazardous refractory waste following local industrial waste management standards.

FAQs about Zirconia Ceramic Foam Filter

  1. Q1: What makes Zirconia Ceramic Foam Filter suitable for molten steel filtration?
    Zirconia Ceramic Foam Filter operates reliably at temperatures up to 1700 °C, maintaining dimensional stability and structural integrity. Its tetragonal zirconia phase resists thermal shock and mechanical erosion during pouring. This ensures stable metal flow and prevents filter breakage in continuous casting operations.

  2. Q2: How does Zirconia Ceramic Foam Filter improve casting surface quality?
    The filter captures non-metallic inclusions as small as 10 µm, resulting in smoother metal flow and cleaner cast surfaces. By removing entrapped slag and oxides, it eliminates surface pitting and machining defects. Foundries report up to 25 % fewer surface-related rework cases after installation.
  3. Q3: Can Zirconia Ceramic Foam Filter be used with stainless and alloy steels?
    Yes. Its chemical inertness to Fe, Cr, and Ni alloys prevents contamination and reaction with molten metal. The non-wetting surface minimizes slag adhesion, maintaining stable filtration performance. This compatibility makes it ideal for high-alloy and stainless steel casting lines.
  4. Q4: How does the filter control molten metal turbulence?
    The 3D open-cell structure provides 75–85 % porosity, creating a laminar flow that reduces turbulence and air entrapment. This leads to uniform metal filling and prevents void formation in the mold cavity. As a result, inclusion-induced shrinkage defects are significantly reduced.
  5. Q5: What pore sizes are available for Zirconia Ceramic Foam Filter?
    Standard pore densities range from 10 ppi to 40 ppi, selected based on steel grade and casting requirements. Coarser pores allow higher flow rates, while finer pores provide better filtration precision. ADCERAX offers customized porosity control within ±1 ppi for specialized processes.

Reviews on Zirconia Ceramic Foam Filter

  • ⭐️⭐️⭐️⭐️⭐️

    “Our foundry switched to Zirconia Ceramic Foam Filter for high-alloy steel casting, and the difference was immediate. The filters delivered exceptional inclusion capture efficiency and kept the molten flow stable during long runs. We also noticed fewer surface defects and a smoother machining finish on finished parts.”
    — James R., Metallurgy Engineer, Norcast Automotive Components GmbH (Germany)

  • ⭐️⭐️⭐️⭐️⭐️
    “We use Zirconia Ceramic Foam Filter in our stainless valve casting line, and it performs reliably even under continuous 1700 °C pouring conditions. The flow remains consistent, and the filters never cause contamination issues. ADCERAX support was fast and technical, helping us achieve 20% lower rejection rates across multiple casting batches.”
    — Michael T., Production Manager, Atlantic Steel Foundry Inc. (USA)
  • ⭐️⭐️⭐️⭐️⭐️
    “Our plant needed stable filtration for tool steel molds, and this solution worked perfectly. The filters maintained excellent thermal shock resistance after multiple cycles and eliminated visible slag residues. With these filters, we’ve extended our die life and reduced maintenance downtime by almost 18%.”
    — Kenji S., Casting Supervisor, Osaka Industrial Components Co. (Japan)
  • ⭐️⭐️⭐️⭐️⭐️
    “After replacing our previous filters with Zirconia Ceramic Foam Filter, we saw clear improvement in metal flow control and batch uniformity. The packaging and delivery were professional, and installation was simple. This product has become our standard for high-efficiency clean steel casting operations.”
    — David L., Procurement Director, Polar Foundry Solutions Ltd. (Canada)
customize size

Customization Services for ZrO2 Foam Filter

ADCERAX® provides tailored engineering and production support for Zirconia Ceramic Foam Filter to meet diverse casting conditions and alloy specifications.

Structural Design Customization

Every filtration system requires precise geometric fit and flow integration to ensure stable casting performance.

  • Shape Options: Square, round, or irregular forms for specific gating systems.
  • Mounting Fit: Customized edge profiles for secure installation in refractory holders.
  • Flow Alignment: Designed to balance molten stream pressure and direction effectively.

Pore and Material Engineering

Material and pore architecture are optimized to match steel type, inclusion load, and casting turbulence.

  • Pore Uniformity: Consistent open-cell network ensures predictable filtration efficiency.
  • Material Composition: Y₂O₃ or MgO-stabilized zirconia selected for alloy compatibility.
  • Thermal Endurance: Enhanced formulation for sustained operation at extreme temperature.

Integration and Performance Optimization

Filters are adapted for system-level use, ensuring functional alignment with modern foundry operations.

  • System Matching: Developed to fit automated or manual pouring systems precisely.
  • Coating Treatment: Optional anti-spall or pre-wetting layer for specific steel alloys.
  • Quality Traceability: Each batch is laser-marked and verified for production consistency.

Related Products

ADCERAX - Your Trusted Advanced Ceramics Manufacturing Partner

Direct factory manufacturing with comprehensive ceramic materials expertise and global supply capabilities

Direct Factory Manufacturing

China-based ceramic materials production facility with state-of-the-art equipment

Engineering Team

Experienced professionals in advanced ceramics applications and custom design

Quality Control

Strict quality control standards for technical ceramics manufacturing and quality management

Global Supply Chain

Serving customers worldwide with technical ceramics and rapid response

24/7 Technical Support

Round-the-clock support for ceramic components inquiries and technical assistance

500+ Satisfied Customers

Trusted by global customers for advanced ceramic materials and precision components

Get in touch with us

Our team will be happy to respond to you in less than 24 hours.

Adcerax's factory

Quick Quotation

*Our team will answer your inquiries within 24 hours.

*Your information will be kept strictly confidential.

Ready to Solve Your Engineering Challenge?

Partner with ADCERAX for reliable, high-performance advanced ceramic solutions. Our engineers are ready to discuss your project.

E-mail

info@adcerax.com

Phone

+(86) 0731-74427743 | WhatsApp: +(86) 19311583352

Response Time

Within 24 hours

Quick Quote

The more details you provide, the faster we can quote.

*We respond within 24 hours. All inquiries are confidential.

Download Catalog

Get Your Custom Sulution

The more details you provide, the faster we can respond.

customize size

*We respond within 24 hours. All inquiries are confidential.

Download Catalog